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The behavior of Lyapunov exponentsλ and dynamical entropiesh, whose positivity
characterizes chaotic motion, under Lorentz and Rindler transformations is studied.
Under Lorentz transformations,λ andh are changed, but their positivity is preserved
for chaotic systems. Under Rindler transformations,λ andh are changed in such a way
that systems, which are chaotic for an accelerated Rindler observer, can be nonchaotic for
an inertial Minkowski observer. Therefore, the concept of chaos is observer-dependent.
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A key concept to classify and characterize dynamical systems is their sensi-
tivity to small changes of initial conditions. This sensitivity is expressed by the
so-called Lyapunov exponents (LEs)λi that are defined as the statistical average

λi = lim
T→∞

1

T

∫ T

0
λi (t) dt (1)

where

λi (to) = lim
1t→0

1

1t
log

∣∣∣∣ 1xi (t)

1xi (to)

∣∣∣∣ (2)

are local rates of change of the distance between different initial states (see
Eckmann and Ruelle, 1985, for more details). Here,1x(to) is the distance between
the initial states of the system, and1x(t) is the distance to which1x(to) has de-
veloped after time1t = t − to under the evolution of the system. The coordinates
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are indicated byi = 1, . . . , n, wheren is the dimension of the phase space in
which the evolution (discrete or continuous in timet) of the state of the system is
represented.

The LEsλi resulting from the temporal average of the ratio1x(t)/1x(to)
are known as dynamical invariants of the system. The invariance refers to trans-
formations of the phase space coordinates (see, e.g., Eichhornet al., 2001). The
evolution of the distance1x can then be characterized by

1xt ≈ 1xto exp(λi t) (3)

Dynamical systems exhibit intrinsically unstable behavior if at least one LE
of the system is positive although6iλi ≤ 0. In such a case, the distance between
initial states is amplified exponentially. In recent decades, the term chaos (or de-
terministic chaos) has been coined and extensively used for this situation. Mean-
while there is a vast amount of literature in which many more details about chaotic
dynamical systems are discussed from the perspectives of ergodic theory, vec-
tor fields, distributions, stochastic systems, etc. (see, e.g., Arnold, 1998; Cornfeld
et al., 1982; Eckmann and Ruelle, 1985; Guckenheimer and Holmes, 1983; Lasota
and Mackey, 1994).

Since chaos is characterized by the positivity of at least one LE of the sys-
tem, the significance of the concept of chaos depends essentially on the invari-
ance of the LEs. In this paper we are interested in the behavior of the LEs un-
der transformations beyond pure space transformations for dynamical systems. In
particular, we study the behavior of LEs under two specific types of relativistic
spacetime transformations between different observer frames: the Lorentz trans-
formation and the Rindler transformation. For the observer frames, the natural
choice is that of Minkowski and Rindler frames, respectively. We will demon-
strate that a positive LE changes its value and can even become zero under these
transformations.

It should be noted that chaotic behavior in general relativistic scenarios,
in particular Bianchi type cosmological models, has been studied for quite a
time (Barrow, 1982; Belinskiet al., 1982). Based on covariant definitions of
“Lyapunov-like” exponents (Gurzadyan and Kocharyan, 1987; Szydlowski, 1993)
and fractal dimensions (Cornish and Levin, 1997a,b), it was shown that chaos is
an inherent feature of such cosmologies. Our purpose in this paper is different in-
sofar as we study chaotic behavior in a given geometry, when different coordinate
systems are employed by different observers, rather than the chaotic behavior of ge-
ometries themselves. To our knowledge the way in which an observer-dependence
manifests itself for coordinate transformations with respect to a given geometry
was not worked out before.

For an observer moving with speedv relative to an inertial observer, the
Lorentz transformation (Einstein, 1905) provides a time dilation
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1t ′ = 1

γ
1t (4)

and a Lorentz contraction

1x′1 = γ1x1 (5)

1x′i = 1xi (6)

for i = 2, 3 with

γ =
√

1− v2

c2
(7)

The local rate of change of perturbations corresponding to the coordinatex1

of a dynamical system at rest with respect to an inertial frame (t , x) is then obtained
from

λx1(to) = lim
1t→0

1

1t
log

∣∣∣∣ 1x1(t)

1x1(to)

∣∣∣∣ (8)

= lim
1t ′→0

1

γ1t ′
log

∣∣∣∣1x1(t ′)
1x1(t ′o)

∣∣∣∣
− lim

1t→0

1

1t
log

∣∣∣∣γγ
∣∣∣∣ (9)

= 1

γ
λ′x1

(t ′o) (10)

The LE of the system fori = 1 is then

λx1 = lim
T→∞

1

T

∫ T

0
λx1(t) dt (11)

= lim
T→∞

1

T

∫ 1
γ

(T− vx1
c2 )

−vx1
γ c2

λ′x1(t ′) dt′ (12)

= 1

γ
λ′x1

(13)

with an appropriately definedλ′x1
for the observer in the moving frame (for an

example see the Appendix).
In addition to Eq. (13) (i = 1), the LEs fori = 2, 3 are

λ′xi
= γ λxi (14)

For a canonical phase space with six coordinates, the Lorentz transformation for
the remaining LEs (indexed byp) is obtained as (i = 1, 2, 3)

λ′pi
= γ λpi (15)
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These results show that the values of LEs are changed under the Lorentz
transformation, but their positivity in the case of chaos is preserved. As a conse-
quence, the concept of chaos is observer-independent under Lorentz transforma-
tions, although the degree of instability associated with chaotic motion changes.
The changing factorγ is due to time dilation. As it is well known in the theory of
dynamical systems, space transformations alone leave LEs invariant.

The second example to be discussed refers to transformations between an in-
ertial Minkowski observer and an accelerated Rindler observer, for short Rindler
transformations. A line element in the Minkowski coordinate frame (t , x) is
given by

ds2 = −dt2+ (dx1)2+ (dx2)2+ (dx3)2 (16)

A line element in the Rindler coordinate frame (τ , ξ ) is given by

ds2 = −(1+ gξ1)2 (dτ )2+ (dξ1)2+ (dξ2)2+ (dξ3)2 (17)

whereg is the proper acceleration of the local Rindler observer, resting at the
origin of his frame, relative to the Minkowski frame.

The local Rindler transformation for the appropriate spacetime region is
(Misneret al., 1973)

t = (g−1+ ξ1) sinh(gτ ) (18)

x1 = (g−1+ ξ1) cosh(gτ ) (19)

xi = ξ i (20)

for i = 2, 3. Equivalently

1t = sinh(gτ )1ξ1+ (1+ gξ1) cosh(gτ )1τ (21)

1x1 = cosh(gτ )1ξ1+ (1+ gξ1) sinh (gτ )1τ (22)

1xi = 1ξ i (23)

Let us first consider the case of a system resting in the Minkowski frame.
Then we have1x1 = 0, hence from Eq. (22)

1ξ1 = −(1+ gξ1) tanh(gτ )1τ (24)

Some calculation using Eqs. (21) and (19) then provides

1t = (1+ gξ1)
1τ

cosh(gτ )
(25)

= gx1

cosh2(gτ )
1τ (26)

as the time dilation of a clock fixed in the Minkowski frame observed by a local
Rindler observer. The coordinate timeτ of the local Rindler system is also the
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proper time of the local Rindler observer resting atξ i = 0. The analogue of the
Lorentz contraction alongx1 of a ruler resting in the Minkowski frame can be
obtained as

1ξ1 = 1

cosh(gτ )
1x1 (27)

The LEs of a dynamical system resting in the Minkowski frame are given by

λxi = lim
T→∞

1

T

∫ T

0
λxi (t) dt (28)

where

λxi (to) = lim
1t→0

1

1t
log

∣∣∣∣ 1xi (t)

1xi (to)

∣∣∣∣ (29)

The corresponding LEs for a local Rindler observer are

λ′ξ i = lim
T→∞

1

T

∫ T

0
λ′ξi (τ ) dτ (30)

where

λ′ξ i (τo) = lim
1τ→0

1

1τ
log

∣∣∣∣ 1ξ i (τ )

1ξ i (τo)

∣∣∣∣ (31)

Using the Rindler type time dilation and length contraction given by Eqs. (26)
and (27), we get

λ′ξ i (τo) = lim
1t→0

gx1

cosh2(gτ )

1

1t
log

∣∣∣∣ 1x1(t)

1x1(to)

∣∣∣∣− lim
1τ→0

1

1τ
log

∣∣∣∣ cosh(gτ )

cosh(gτo)

∣∣∣∣(32)

= gx1

cosh2(gτo)
λx1(to)− g tanh(gτo) (33)

Therefore the LE fori = 1 transforms as

λ′ξ1 = lim
T→∞

x1 tanh(gT)

T x1 tanh(gT)

∫ x1 tanh(gT)

0
λx1(t) dt

− lim
T→∞

1

T

∫ gT

0
tanh(gτ )d(gτ ) (34)

= λx1

(
lim

T→∞
x1

T

)
− g (35)

where

λx1 = 1

x1

∫ x1

0
λx1(t) dt (36)
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is the corresponding LE for the Minkowski observer by Eqs. (19) and (30) (for an
example see the Appendix).

As for the case of the Lorentz transformation, the picture for a six-dimensional
canonical phase space can be completed by the transformation relations

1pξ1 = 1px1 cosh(gτ ) (37)

1ξ i = 1xi (38)

1pξ i = 1pxi (39)

with pξ i andpxi as the momentum components conjugate toξ i andxi andi = 2,
3. The corresponding LEs can be derived as

λ′p,ξ1 = λp,x1

(
lim

T→∞
x1

T

)
+ g (40)

λ′ξ i = λxi

(
lim

T→∞
x1

T

)
(41)

λ′p,ξ i = λp,xi

(
lim

T→∞
x1

T

)
(42)

If the proper accelerationg of the Rindler observer vanishes, its status becomes
that of a Minkowski observer and the LEs for the two frames are
identical.

Applying Pesin’s formula, the transformation properties of positive LEs for
g 6= 0 can be expressed by the transformation of their sum, the Kolmogorov–Sinai
(KS) entropyh, as

h′ = h

(
lim

T→∞
x1

T

)
+ α′g = α′g (43)

In ordinary units, the dimension ofh is that of an inverse time. This can be taken
into account by rewriting Eq. (43) as

h′ = h

(
lim

T→∞
x1

T

)
+ αg

c
= αg

c
(44)

wherec is the velocity of light, sog/c is usually small. It follows that the value of the
KS-entropy is proportional tog for the Rindler observer independently of its value
in the Minkowski frame. Since the first term in Eq. (44) vanishes independently
of h, any system in the Minkowski frame hash′ ∝ g > 0 in the Rindler frame.
It is interesting to note thath′ is formally proportional to the Hawking–Unruh
temperaturêT sinceg ∝ T̂ (Hawking, 1974; Unruh, 1976).

By contrast to the situation considered so far, let us now consider a system
resting at the origin of the Rindler frame (ξ i = 0 and1ξ i = 0) and study the
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transformation properties of the LEs and the KS-entropy for this case. From Eq.
(21), the time dilation of a clock fixed at the origin of the Rindler frame is

1t = cosh(gτ )1τ (45)

and, from Eq. (22), the length contraction of a ruler fixed in the Rindler frame
along theξ1-axis is

1x1 = 1

cosh(gτ )
1ξ1 (46)

From Eq. (29), we obtain

λ′ξ1(τo) = cosh(gτo)λx1(to)+ g tanh(gτo) (47)

which provides

λ′ξ1 = lim
T→∞

1

T

∫ sinh(gT)/g

0
λx1(t) dt + lim

T→∞
1

T

∫ gT

0
tanh(gτ ) d(gτo) (48)

= λx1

(
lim

T→∞
sinh(gT)

gT

)
+ g (49)

as the LE fori = 1 for the local Rindler observer. For the observer in the Minkowski
frame this means

λ′x1 = (λξ1 − g)

(
lim

T→∞
gT

sinh(gT)

)
(50)

= λ′ξ1

(
lim

T→∞
gT

sinh(gT)

)
(51)

The LEs corresponding to the other phase space coordinates are transformed as
(i = 2, 3)

λ′p,x1 = (λp,ξ1 + g)

(
lim

T→∞
gT

sinh(gT)

)
= λ′p,ξ1

(
lim

T→∞
gT

sinh(gT)

)
(52)

λxi = λ′ξ i

(
lim

T→∞
gT

sinh(gT)

)
(53)

λp,xi = λ′p,ξ i

(
lim

T→∞
gT

sinh(gT)

)
(54)

The KS-entropyh for the Minkowski observer is

h = h′
(

lim
T→∞

gT

sinh(gT)

)
(55)

whereh′ is the KS-entropy for the Rindler observer. Equation (55) providesh = h′

for g = 0, when the local Rindler observer effectively becomes a Minkowski
observer.
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In the general case ofg 6= 0, h vanishes for any finite nonnegative value of
h′. In other words, a chaotic system (h′ > 0) in the local Rindler frame will be
nonchaotic (h = 0) in the Minkowski frame. Conversely,h′ tends to infinity for any
finite value ofh. This implies that the degree of instability of a chaotic system in
the Minkowski frame diverges if it is transformed to the Rindler frame. As will be
shown elsewhere, the situation is similar for the transformation between Novikov
and Schwarzschild observers.

In summary, we have shown that the concept of chaos as characterized by
positive LEs or their sum, the KS-entropy, is not invariant under the Rindler trans-
formation. In particular, any nonchaotic system in the Minkowski frame is chaotic
in the local Rindler frame, and any chaotic system in the local Rindler frame is non-
chaotic in the Minkowski frame. Under the Lorentz transformation, the concept of
chaos itself is invariant but the degree of instability related to chaotic motion is not.

The main origin of the observer-dependence of chaos under Rindler transfor-
mations as in Eq. (55) and in the first term of Eqs. (43) and (44) is the exponential
time dilation. (The general significance of nonlinearities in spacetime transforma-
tions of chaotic systems will be discussed elsewhere.) The second term in Eqs. (43)
and (44) adds another increment to this observer-dependence, which results from
length contraction. This increment is formally proportional to the Hawking–Unruh
temperature, which is induced by Hawking–Unruh thermal noise related to quan-
tum fluctuations. The observer-dependence of chaos, however, is a purely classical
effect.

Other interesting features in this context are the transformations of Minkowski
vacuum states into Rindler particles (see Clifton and Halvorson, 2001, for a most
recent account) and of thermal equilibrium states in Minkowksi spacetime into
degenerate temperature states in Rindler spacetime (Zhaoet al., 1996).

APPENDIX: A SIMPLE EXAMPLE

Consider an automorphism8 on a torus orthogonal to thex1-axis given by

8 = (ax2+ bx3, cx2+ dx3) (mod 1) (A1)

with ad− bc= 1. The eigenvalues of the coefficient matrix

M =
(

a b

c d

)
(A2)

areµi for i = 1, 2. It is known that8 is chaotic if the two roots ofM are
incommensurable. In this case, the KS-entropy is given by

h = log |µm| (A3)

whereµm is that value ofµi whose modulus is greater than 1.
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A special case of such an automorphism is Arnold’s cat map witha = b =
c = 1 andd = 2. In this case,h = log(3+√5)/2.

Lorentz Transformation

Now consider the torus resting in the inertial frame. For an observer resting
with respect to the torus, let us assume the time interval1t = 1 for the automor-
phism. The corresponding time for the moving observer then is

1t ′ = 1t
1

γ
= 1

γ
(A4)

The time interval of the automorphism during a unit of timet ′ is 1/1t ′ for the
moving observer. Hence the coefficient matrix is

M ′ = M
1
1t ′ (A5)

with eigenvalues

µ′i = µ
1
1t ′
i (A6)

As a result, the KS-entropy for the moving observer is

h′ = log |µm| 1
1t ′ = γh (A7)

Rindler Transformation

Let us consider the same torus, again resting in the Minkowski frame. For
a Minkowski observer resting close to the torus, let us assume the time interval
1t = 1 for the automorphism. Since1x1 = 0, we have

1ξ1 = −(1+ gξ1) tanh(gτ )1τ (A8)

With

1t = (1+ gξ1)
1τ

cosh(gτ )
(A9)

and

1+ gξ1 = gx1

cosh(gτ )
(A10)

due to Eq. (19), we obtain

1t = gx1

cosh2(gτ )
1τ (A11)
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as the “time dilation” of a clock fixed in the Minkowski frame for the local Rindler
observer. For him, the time interval of the automorphism during a unit of timeτ is

1

1τ
= gx1

cosh2(gτ )
(A12)

Hence the coefficient matrix is

M ′ = M
1
1τ (A13)

with eigenvalues

µ′i = µ
1
1τ

i (A14)

The KS-entropy for the local Rindler observer is

h′ = lim
T→∞

1

T

∫ T

0
h′(τ ) dτ (A15)

where

h′(τ ) = log |µm| 1
1τ = gξ1

cosh2(gτ )
h (A16)

Hence,

h′ = lim
T→∞

x1h

T

∫ gT

0

1

cosh2(gτ )
d(gτ ) (A17)

= h

(
lim

T→∞
x1

T

)
(A18)

As a result, the KS-entropy vanishes for the local Rindler observer if it is finite for
the Minkowski observer.
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